
DEVELOPING THE BEST SCHEDULING ALGORITHM FROM
EXISTING ALGORITHMS FOR REAL TIME OPERATING SYSTEMS

Abdul Salam
“University of Malakand,Chakdara,KPK,Pakistan

asalam.swat@gmail.com

Sohail Abbas
University of Malakand,Chakdara,KPK,Pakistan

sabbas@uom.edu.pk

Yousaf Khan
University of Malakand,Chakdara,KPK,Pakistan

yousafkhan792@gmail.com

Sanaul Haq
University of Malakand,Chakdara,KPK,Pakistan

sanaulhaq33@yahoo.com"

Saeed Ullah Jan
University of Malakand,Chakdara,KPK,Pakistan

saeedullah@uom.edu.pk”

ABSTRACT

This paper is about the selection of scheduling algorithm for real time system. In this paper we compared
different scheduling algorithms and from these comparison we get another algorithm which is good in
performance as compared to the existing one. First we compare ACO and EDF but both have some merits
and demerits. ACO is not good when system is under loaded, preemptive and single processor while the
result of ACO is good in overloaded condition with a lot of execution time. From the comparison of ACO
and EDF another algorithm is developed called adaptive algorithm which is best in both overloaded and
under loaded condition. [8]

Then we compared EDF and GA based scheduling algorithm. EDF is used in under loaded condition and
when the system become overloaded it changes to GA based algorithm. From the comparison of these
two algorithms we get another algorithm which is also called adaptive algorithm. Performance of both
algorithms is measured by using success rate, effective CPU utilization and execution time.

KEYWORDS

REAL TIME SCHEDULING, DEADLINE, SCHEDULER, EARLIEST DEADLINE FIRST (EDF),
ANT COLONY OPTIMIZATION (ACO), GENETIC ALGORITHMS.

1. INTRODUCTION

1.1 REAL-TIME OPERATING SYSTEMS
Real time systems are those systems which depend on two factors. The one is the logical result of
computation and another is the time at which it produces the results. A fixed time is given to a process to
complete its execution and if the time expires for the process the system will fail. There are two
techniques for real time scheduling: (1) static (2) dynamic. In static algorithm the priorities remain the

same for a task and priorities are assigned at the time of designing, while in dynamic assigns priority at
run time [1, 6].

1.2 ANT COLONY OPTIMIZATION (ACO) ALGORITHM
ACO was bring together to solve hard combinatorial optimization problem. Ant Colony is an
approximation algorithms which is used to provide solution to hard problems in the required time. ACO
follows the principle of real ants. The ant first visit different areas randomly and as the food source is
found it evaluates quality and quantity of food and guides other ant to the food source. [12]

1.3 EARLIEST DEADLINE FIRST (EDF) ALGORITHM
In EDF algorithm each process has a deadline. Priorities are given to processes according to their
deadlines. Higher priority is given to those processes whose deadline is nearest and that process is
selected for execution. This algorithm is good for a system with single processor and under loaded
systems. The performance of EDF is not good when system is overloaded [4, 9].

1.4 GENETIC BASED SCHEDULING ALGORITHM
Genetic algorithm can either be produced randomly or based on various other algorithms. All individual is
an encoding of a set of parameters that uniquely identifies a possible outcome of the problem. In genetic
algorithm first we have to encode possible solution of a problem which are strings and we called these
stings a set of chromosomes.

1.5 ADAPTIVE SCHEDULING ALGORITHM
To overcome the limitation of the above three algorithms we develop another technique which is called
Adaptive scheduling Algorithm. By combining ACO and EDF we get adaptive algorithm. As, EDF is not
good in overloaded situation and ACO is better than EDF when the system is overloaded [4]. The
disadvantage of ACO is large execution time. Adaptive scheduling Algorithm automatically switch
between Algorithms. [8]

By combining GA based algorithm and EDF we can also get adaptive algorithm. When the system is
under loaded, the EDF algorithm is used by adaptive algorithm. During overloaded condition,GA
algorithm is used [4].

2. COMPARISON OF DYNAMIC ALGORITHMS

2.1 EARLIEST DEADLINE FIRST (EDF) ALGORITHM
EDFs is the dynamic scheduling algorithm which depends upon the deadline of the task. The task which
has nearest deadline has highest priority [10].

EDF depends on some parameters which are Start time, Execution Time, Deadline of the process, Release
time and the Load of each process. As the process is created, it is stored in a queue and its priority
depends upon the deadline [9].

The processes are added one by one in a EDF queue. Let ? = (? 1,p2,? 3……….? ?) denotes a set of
process. Suppose for process ? 1, p1= (?i,ei,? i) is characterized by its release time ?i, execution time ??
and deadline of the process ? 1. The process is added in the system and the process with highest priority is
switched to EDF algorithm and the switching depends upon deadline of the process.

For process p1 the periodic task τi= (ci,pi) is by two parameters: one is execution time c1 and another is
period p1. The utilizations of periodic task τi is defined as follow [11].

? i=ci/pi (1)

A task can be feasibly scheduled using EDF algorithm if the total utilization of a task set ? is

(2)

In the under loaded process, the EDF algorithm executes but CPU usage for that process is minimum . In
case of overloaded some processes fail during execution that is the disadvantage of EDF algorithm [4]. To
minimize this failure adaptive algorithm is utilized [5, 7].

2.2 ANT COLONY OPTIMIZATION (ACO) ALGORITHM
This algorithm follows the behavior of real ants each one makes a path and there are many ants which are
active at the same time concurrently [3].

In this algorithm, there are many ants and each ant represent a node. Each ant initiates their journey from
various nodes after applying scheduling algorithm in ACO each node is a task whose probability depend
upon the pheromone value ? and heuristic value ? [2, 12].

It is given by;

Where,

(?) is the probability at time t of ith node.

?? is the value pheromone on ??ℎ node at time ?.

?? is a heuristic value of ??ℎ node at time ? and is calculated by,

�?=? ? ?−?
2.3 GENETIC ALGORITHMS
A genetic algorithm copies the natural evolution process and it generally starts with the initial populations
of individual, which could be generated randomly or it depends on some other algorithm. Each member of
a set uniquely identifies a solution for problem. The populations go through different stages in order to
create new individuals which replace individuals from which it creates. In crossover, part of the two
individuals of the populations are exchanged to create two entirely new individuals which replace the
individual from which they evolve. Each individual is chosen for crossover with a probability of
crossovers rate. Mutations alter one or extra gene in chromosomes with a chance of mutations rate. For
example, if the individual is an encoding of a schedule, two tasks are picked randomly and their positions
are interchanged. A fitness function calculates the fitness of each individual, i.e., it decides how good a
particular solution is. In the selection process, each individual of the current population is selected into the
new population with a probability proportional to its fitness. The selection process ensures that
individuals with higher fitness values have a higher probability to be carried onto the next generation, and
the individuals with lower fitness values are dropped out. The new population created in the above

manner constitutes the next generation, and the whole process is terminated either after a fixed number of
generations or when a stopping criteria is met. The population after a large number of generations is very
likely to have individuals with very high fitness values which imply that the solution represented by the
individual is good; it is very likely to achieve an acceptable solution to the problem. There are many
variations of the general procedure described above. The initial population may be generated randomly, or
through some other algorithm. The search space, i.e., the domain of the individuals, can be limited to the
set of valid individuals, or extended to the set of all possible individuals, including invalid individuals.
The population size, the number of generations, the probabilities of mutation and crossover are some of
the other parameters that can be varied to obtain a different genetic algorithm

The height varying point of the tasks are taken for cross over as shown in fig 1.After cross over the task
arrangement is shown in fig 2. And their Gantt chart is shown in Fig 3.

P1

P2

Figure 1: Before Cross Over Point

P1

P2 - -

Figure 2: After Cross Over

T1 T3 T4 T6 T8

T2 T5 T7

Fig 3 Gantt chart of tasks after Cross over.

T 2 T 3T 1 T4 T 8

T 5T 2 T 7

T 2 T 4T 1 T 7

T 5T 2 T 6 T 8

2.4 ADAPTIVE ALGORITHM
Adaptive algorithm is used to improve the load balancing. An Adaptive algorithm follows the following
principles:

When the system is under loaded it uses EDF algorithm and priority of the job is decided according to the
deadline of the task [6]. When the system is overloaded it switches to ACO algorithm, calculates the total
execution time and minimum time required for each process. Designing steps of adaptive algorithm are as
follow:

Yes

No

Figure 4: Flowchart of an Adaptive Scheduling Algorithm

1. Create the process and initialize all the parameters such as Execution time, start Time, Deadline,
load of process and release time.

2. First switch process to EDF.
3. The process with nearest deadline [6] is given the highest priority.
4. For switching to ACO algorithm, if the load of the process is greater than CPU load, then the

process is transferred from EDF to ACO algorithm.

START

Create the process with the parameters such as Start
time, Execution Time and the deadline.

If (The
Processor is
overloaded)

ACO Algorithm

Calculate SR, CPU Utilization

END

EDF Algorithm

5. In ACO, it will calculate the total time required for all the processes and the process which
contains minimum execution time is executed first. In short execution depends upon the
execution time.

6. Success ratio is used for performance measurement, CPU Utilization and it also calculates the
total number of processes which are executed using EDF and the ACO algorithm with the
deadline missed process [6].

7. Finally the result is calculated.

Figure 5: Comparison of Execution time of EDF, ACO, GA and Adaptive Algorithm

0

100

200

300

400

500

600

700

800

900

5 10 15 20 25 30 35 40 45 50

Ti
m

e
in

 m
ic

ro
 s

ec
on

ds

%Load

Execution time of different algorithms

EDF

ACO

GA

Adaptive

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 10 11

pr
oc

es
s

sc
he

du
le

%Load

Adaptive Algorithm overloaded

% CPU Utilization

%Successive

Figure 6: Successive rate and CPU utilization for Adaptive Algorithm when over loaded

Figure 7: Comparison of all the processes scheduled for all Algorithms

3. CONCLUSIONS
In this paper, we compared EDF, ACO and GA based algorithm. All of the algorithms have some
advantages and disadvantages. EDF performs well when the system is under loaded but ACO does not
perform well in that situation. On the other hand EDF does not perform well when the system is
overloaded while ACO and GA based algorithm take more execution time in that type of situation.

From the comparison of EDF, ACO and GA we develop an algorithm which is called adaptive algorithm.
This algorithm works well when future workload of the system is not known. An Adaptive Algorithm
schedules the process on single processor when it is preemptive. This algorithm automatically switches
between the EDF and ACO algorithm and overcome the limitation of both the algorithms (EDF and
ACO) algorithms. Adaptive algorithm takes less execution time than ACO, EDF and GA. when load of
process is increased system usage also increased.

4. REFERENCES
[1] Jane W.S. Liu," Real-Time Systems" , Pearson Education, India,pp. 121 & 26, 2001.

[2] K. Kotecha and A. Shah,“ACO based dynamic scheduling algorithm for real-time operating
system”, Sent to AIPR-08, Florida, 2008.

[3] Bank, M., Honig, U., and Schiffmann, W.: "An ACO-based approach for scheduling task
graphs with communication costs�. Proc. Int. Conf. on Parallel Processing (ICPP�05), 2005,
pp. 623–629

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10

N
o

of
 P

ro
ce

ss
 S

ch
ed

ul
e

%Load

Comparison of Number of Process Schedule

EDF Algorithm

ACO Algorithm

GA Agorithm

Adaptive Algorithm

[4] Hyeonjoong Cho, Binoy Ravindran & E. Douglas Jensen “ Optimal Real-Time Scheduling
Algorithm for Multiprocessors “ Proceedings of the 27th IEEE International Real-Time Systems
Symposium (RTSS'06)- 2006.

[5] M.Kaladevi and Dr.S.Sathiyabama, "A Comparative Study of Scheduling Algorithms for Real
Time Task� International Journal of Advances in Science and Technology", Vol. 1, No. 4, 2010.

[6]A. Silberschatz, P.B. Galvin and G. Gagne, (2001)," Operating Systems Concepts", Sixth
edition, John
Wiley Publishers.

[7] Lalatendu Behera Durga Prasad Mohapatra,"Schedulability Analysis of Task Scheduling in
Multiprocessor Real-Time Systems Using EDF Algorithm",� 2012 International Conference on
Computer Communication and Informatics Coimbatore, INDIA

[8] Jashweeni Nandanwar, Urmila Shrawankar ,"An Adaptive Real Time Task Scheduler� IJCSI
International Journal of Computer Science Issues", Vol. 9, Issue 6, No 1, November 2012.

[9] C. Liu and J. Layland, "Scheduling Algorithms for Multiprogramming in a Hard Real-Time
Environment",� J. ACM, vol. 20, pp. 46–61, 1973.

[10] Giorgio C. Buttazzo, Marko Bertogna and Gang Yao, "Limited Preemptive Scheduling for
Real-Time Systems� IEEE Transactions On Industrial Informatics", Vol. 9, no. 1, February
2013.

[11] Xuefeng Piao, Sangchul Han, Heeheon Kim, Minkyu Park, Yookun Cho "Predictability of
Earliest Deadline Zero Laxity Algorithm for Multiprocessor Real-Time Systems" ,Proceedings of
the Ninth IEEE International

[12] Symposium on Object and Component-Oriented Real-Time Distributed Computing 2006

