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Abstract 
The problem of aerodynamic properties of rotorcraft especially harmonic blade oscillations and rotor 

vibration transmitted to fuselage are very important with particular reference to rotor. In this paper the 

longitudinal cyclic pitch, lateral cyclic pitch, main rotor collective pitch angle and tail rotor collective 

pitch angle are used as control inputs to develop a nonlinear 6 DOF model of a longitudinal rotorcraft. In 

this research translational/rotational dynamics and rotational kinematic equations of motion are derived 

for 6 DOF rotorcraft motion about possible equilibrium position. On the basis of these linearized 

equations, an optimal controller is designed for different flight conditions under different rotor speeds 

with relevant blade oscillations and rotor vibration effect. Wind tunnel data of an existing rotorcraft is 

used for simulation purposes. A closed loop feedback controller is designed using MATLAB/ Simulink 

software. The simulation results obtained by varying control inputs indicate that this approach is well-

suited to reduce/eliminate the harmonics blade oscillation and rotor vibration.  
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1. Introduction 

 
The rotor is accountable for three core functions in rotorcrafts; to create a lift force in upward direction 

opposite to the force of gravity; to create a thrust force in a direction opposite to the drag force for 

forward flight and source for creating potent actions to control the altitude and position of rotorcraft 

during hovering condition.  

 
Zioutis et al. [9] studied aerodynamic behaviour of a convoluted helicopter rotor flow field. The research 

focused on computational investigation about efficiency of developed mathematical models. Using 

procedures based on Lagrangian type, Vortex Element method, free vertical wake geometry and rotor 

airloads are calculated. Thanapalan [8] studied modeling and simulation of a single main rotor helicopter, 

UH-60 Black Hawk helicopter. The simulation study consists of a Generic Rotorcraft Model (GRM) that 
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calculated the forces and moment expressions. The simulation results are compared with the flight test 

data. The model provided a clear idea for controller development to improve flight handling quality and 

performances. Houbolt and Brooks [4] worked on the flap-lag-torsion stability of elastic hingeless blades. 

In their work only linear flap-lag coupling were considered while the nonlinear bending torsion coupling 

terms were not included. Mil’ et al. [6] investigated the complete flap-lag-torsion stability problem. The 

research showed that nonlinear structural moments caused by flap and lead-lag bending greatly affect the 

torsion deflection of the hingeless blade. This bending-torsion was detected to be proportional to the 

product of the flap and lead-lag bending curvatures. Arcidiacono [1] derived some nonlinear equations of 

motion which explained the nonlinear flap-lag-torsion coupling problem in a complete and detailed way. 

The research ignored some nonlinear terms in the derivation. David [2] worked on an analytical model for 

calculating the forces between the rigid bodies i.e. rotor blades and a non-colliding contact. The work 

described the rigid bodies in motion or static equilibrium where adjacent bodies may touch at multiple 

points. The equations of forces for bodies in non-colliding contact are being modified to deal with 

colliding bodies. Similarly an improved method for calculating the forces between systems of rigid bodies 

in colliding contacts is also presented. Datta [3] investigated accurate and reliable estimate of rotor 

vibratory loads in steady level flight. The leading source of helicopter vibration is the rotor vibratory 

loads. According to the author the helicopter has two dangerous states of vibrations in steady level flight, 

which are low state transition and high speed forward flight. The study describes that at low speed the 

rotor mechanism i.e. inter linking of blade tip vortices below the rotor disk is well understood but at high 

speed the mechanism is not clear. The research focuses on high speed flight. The ultimate goal of the 

research is to understand the mechanism and to accurately model them. To improve the rotor structure the 

measured lift chord force pitching moment and damper force are taken from the UH60 Flight Test 

Program. Potsdam et al. [7] calculated the helicopter rotor air loads across a range of flight conditions. 

For this purpose the authors studied a Computational Fluid Dynamics (CFD) code and rotorcraft 

Computational Structural Dynamics (CSD). For a UH-60A Blackhawk helicopter, four challenging level 

flight conditions are computed i.e. low speed with blade-vortex interaction, high speed  with advancing 

blade negative lift,  high thrust with dynamic stall, and hover. Results are compared with UH-60A 

airloads program flight test data. Juho Ilkko et al. [5] worked on a computational model that treated the 

four blades of a helicopter as rigid body, hinged at their roots. The authors examined the vibrant actions 

of motion caused by the blade angle controls. Using the Reynolds averaged Navier-Stokes equations, a 

time-accurate flow solution is presented with the help of an overset grid system consisting of around 20 

million cells, hover and fast flight forward case are studied. 

 

Different rotorcraft motions are controlled with the help of variable pitch propellers that undergoes 

certain elastic deformations by collision with the surrounding air.  Desired motions can be achieved by 

twisting the blades in certain directions or in other words changing the pitch angle of the blades results in 

a successful change in the angle of attack     that depends on the direction of the relative wind. A change 

in the position of the blade shall change the direction of the thrust force and accordingly the motion of the 

rotorcraft is controlled. The collision of rotor blades with the surrounding air acts as an action and 

reaction forces. During hovering and forward flight condition different forces act on a rotor craft as 

shown in Fig (1). 
 

 
 

Fig 1: Forces acting on rotorcraft 

 

The thrust force is produced as per Newton’s Laws of motion, when a system expels or accelerates mass 

in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction on that 



system. Thrust force has a direct relation with the rpm i.e. an increase in rpm more air is accelerated by 

the propeller as a result more thrust force is generated. For a rotorcraft system, drag force is referred as a 

frictional force with a direction opposite to the thrust force. Lift force is a reaction force that is exerted by 

the air on the airfoil as it moves through the air. It means that when the propeller rotates in the air it exerts 

a pressure force on the air in downward direction and the air also exerts a force same in magnitude on the 

propeller but opposite in direction. Lift force increases until it overcomes the weight of the helicopter as a 

result the helicopter fly up in the air. 

The main rotor collective pitch control i.e.     angles all blades equally and simultaneously and allows 

the rotorcraft to raise vertically upward shown in Fig 2(a). The altitude of a helicopter is adjusted through 

collective pitch control, by changing blades pitch simultaneously.  The longitudinal cyclic pitch angle 

      is between the rotor disk and airspeed caused by tilting the rotor disk either up (positive) or down 

(negative) shown in Fig 2(b). It allows the rotorcraft to move forward or backward. 

                               
 

   Fig 2(a): Main rotor collective pitch control                                  Fig 2(b): longitudinal cyclic pitch 

  

Cyclic pitch control      allows each blade to be angled individually and allows the rotorcraft to move 

forward or backward, nose upward or downward, shown in Fig 2(c). The tail rotor collective pitch control 
      is used to counteract the torque effect shown in Fig 2(d). Yaw motion is performed by changing 

angle of attack of the tail rotor. Changing the pitch of the tail rotor blades will produce a side force that 

turns the rotorcraft nose left or right. During flight condition a pilot make changes to these four control 

inputs accordingly 6DOF motion of a rotorcraft is achieved. 

                                         

   Fig 2(c): Lateral cyclic pitch control                                               Fig 2(d): Tail rotor collective pitch 

         

2. Nonlinear Equations of Motion 

 
In nonlinear form the rotorcraft equation of motion can be written as:   

 ̇                                                                                 (1) 

Where “x” represents states and “u” represents four control inputs of a rotorcraft. States of the system are 

defined as; 

                                                                               (2) 

Fig (3) shows different motion states of a rotorcraft i.e. roll, pitch & yaw. 
  

 
 

Fig 3: Different states of rotorcraft 



 

Where (u, v, w)are translational velocities along x, y, z axis of helicopter body fixed frame; (p, q, r) are  

angular velocities about x-, y- and z-axes and (θ, Φ, Ψ) are Euler angles, defining position of  body axes 

relative to the earth. Following are the 6 DOF nonlinear equations derived for a rotorcraft system. 
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Using small perturbation theory the 6DOF nonlinear equations of motion are linearized given below to 

obtain the system state and control matrices. Detail procedure of linearization process of some nonlinear 

equations is given below; 

 

2.1.  Linearization of translational velocity 
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2.2.  Linearization of Angular Velocity 
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2.3.  Linearization of Euler Angles 

 ̇                        
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Now the linearized form of 6 DOF equations in state space is given by; 

 ̇                                                                    (12) 

After linearizing the nonlinear equations of motion the system state and control matrices are obtained 

given in appendix (A) & (B). 
 

3. Rotorcraft Model 
 

In order to simulate the 6 DOF linearized equations of motion on a practical platform, stability derivatives 

data from Puma, SA330 helicopter has been used given in appendix (C). The dimensions of SA 330 Puma 

are given in Fig (4). 

 

 
 

Fig 4: Puma, SA330, helicopter 

 

4. Simulation Results 
 

By applying 1 degree collective pitch to the rotor craft the response of the system is shown in Fig (5). 

    

 Fig 5: Simulation results for 1 degree collective pitch 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-10

-8

-6

-4

-2

0

2
Linear Simulation Results

Time (sec)

A
m

p
li

tu
d

e



The plot indicates instability of the system. Instability is evident from eigenvalues of state matrix (A). 

The instability of the system can be better judged by the eigenvalues having positive real parts. To make 

the system stable an optimal controller is designed programmatically through Matlab/Simulink. 

The block diagram of the feedback controller is given in Fig (6). 

 

Fig 6: Block diagram of feedback controller 

 

The closed loop stability is given by; 

 

 

The negative values show that the system is stable. In order to obtain a relationship between the 

maximum vertical speed (  ) and the collective pitch angle (θ0) a transfer function is obtained; 

 

    

     
 

                                                                       

                                                                        
 

 

Now applying 5 degree collective pitch the simulation results are given in Fig (7). 

 
 

Fig 7:  Simulation results for 5 degree collective pitch 

 

The output of the model for different control inputs was observed the simulation results are shown in Fig (8). 
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Fig 8:  Rotational velocity components                           Fig 9: Translational velocity components 

 

The plot shows angular velocities (p, q, and r) for a collective pitch of 5 degree and longitudinal cyclic 

pitch of 1.5 degree. Maximum hover rate is obtained i.e. 1500 ft/min. The collective pitch along with the 

longitudinal pitch is varied in order to reduce forward speed coupling. For above input control values 

plots of translational velocity (u, v, w) are show in Fig (9). 

 

Similarly plots of Euler angles are shown in Fig (10). 

 
  

                 Fig 10: Euler Angles                                          Fig 11: Closed loop feedback controller 

 

The Closed loop feedback diagram which was developed using Simulink is given in Fig (11). 
 

The C and K matrices has a great role in the performance of forward flight, for a forward flight, C matrix is changed 

by multiplying it with weighing factor (85). The C matrix becomes as such; 

 

The C and K matrices are modified to achieve best turn rates and speed outputs. Evaluation of better 

helicopter flight performance is achieved depending on the amount of available data about the helicopter. 
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5. Conclusion 
 

In this paper we have studied the process of how to simulate the motion of blades considering 

four control inputs of a rotorcraft. The process comprised of linearization of 6DOF nonlinear equations of 

motion using small perturbation theory. Secondly the linearized model was used to obtain the state and 

control matrices for the stability of the rotorcraft. For simulation purpose input data of Puma SA330, 

helicopter was used. The final results were simulated for different values of control inputs using 

MATLAB/ Simulink program. LQR optimal controller is designed for the problem. However Linear 

Parameter Varying controller (LPV) or nonlinear controller can be implemented for better results. 

Another approach very popular these days are augmented controller using soft controlling techniques for 

aerial applications.  

 

Appendices 
 

(A) State matrix                                                          (B) Control matrix 

     
 

(C) Stability derivates data from wind tunnel for Puma SA330, helicopter. 
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